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Cultural Transmission and the Diffusion of Innovations: Adoption
Dynamics Indicate That Biased Cultural Transmission Is the
Predominate Force in Behavioral Change

In challenging the pervasive model of individual actors as cost-benefit analysts who adapt their behavior by learning from
the environment, this article analyzes the temporal dynamics of both environmental (individual) learning and biased cul-
tural transmission processes by comparing these dynamics with the robust *“S-shaped” curves that emerge from the diffu-
sion of innovations literature. The analysis shows three things: (1) that environmental learning alone never produces the
S-shaped adoption dynamics typically observed in the spread of novel practices, ideas, and technologies; (2) that biased
cultural transmission always produces the S-shaped temporal dynamics; and (3) that a combination of environmental
learning and biased cultural transmission can generate S-dynamics but only when biased cultural transmission is the pre-
dominate force in the spread of new behaviors. These findings suggest that biased cultural transmission processes are
much more important to understanding the diffusion of innovations and sociocultural evolution than is often assumed by
most theorists. [diffusion of innovations, cultural transmission, learning, cultural evolution]

produced a multiplicity of different approaches.
Most of these, whether they come from anthropolo-
gists, economists, sociologists, or political scientists, share
one common core element: the notion that individuals
choose among alternative behaviors by performing cost-
benefit analyses using payoff-relevant information (i.e.,
data about the costs and benefits). Laying aside the hyper-
rational, omniscient beings of classical economics forma-
tions,! more plausible approaches model individuals as
goal seekers with limited computational abilities and in-
complete information, who rely on trial-and-error learning,
experimentation, and long experience in similar environ-
ments to achieve locally effective solutions (Camerer and
Ho 2000; Chibnik 1981; Earle 1997; Erev and Roth 2000;
Gladwin and Butler 1984; Harris 1979; Netting 1993;
Young 1998). Using data from the vast diffusion of inno-
vations literature, I argue that human behavioral change
does not result primarily from individual-level trial-and-er-
ror learning or cost-benefit analysis. Instead, I show that
the dynamics of diffusion demand a primary reliance on
some form of biased cultural transmission.
The persuasive model of human behavior that pervades
the social sciences proposes that individuals acquire and
evaluate payoff-relevant information about alternative be-

Efforts to understand human behavioral change have

havioral options by action and interaction in their local so-
cial, economic, and ecological environments (Camerer and
Ho 2000; Chibnik 1981; Earle 1997; Erev and Roth 2000;
Gladwin and Butler 1984; Harris 1979; Young 1998). The
adjective payoff-relevant emphasizes that the information
analyzed by individuals is directly applicable to evaluating
behavioral alternatives, according to some set of pre-
scribed goals. These goals may involve concepts such as
self-interest, reproductive fitness, social prestige, income,
and group benefits. Here, I argue against this standard
model by showing three things. First, environmental leam-
ing models alone, without substantial contributions from
biased cultural transmission, do not generally produce the
empirical “S-shaped” cumulative adoption curves that
dominate the diffusion of innovations literature. Second,
biased transmission models alone, and especially those
with a conformist transmission component, consistently
produce the particular S-dynamics found throughout the
literature. And, third, a combined model, with both envi-
ronmental leaming and biased cultural transmission, al-
lows us to predict the conditions that produce the different
kinds of empirically observed diffusional dynamics. How-
ever, this model only generates S-dynamics when biased
transmission predominates.
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S-Shaped Adoption Curves

One of the most robust findings from over 3,000 studies
in the diffusion of innovation literature is the S-shaped cu-
mulative adoption curve (Rogers 1995:23). This vast lit-
erature contains data for the spread of an enormous variety
of practices, technologies, and ideas in communities and
countries throughout the world. These cases include the
adoption of “innovations” such as hybrid corn among Iowa
farmers, bottle-feeding practices among impoverished
Third Worlders, new governance practices among Fortune
500 companies, chemical fertilizers among small-scale
farmers, novel approaches to mathematics training (the
“new math”) among secondary schools, and the practice of
not smoking among Americans. Typically, the cumulative
adoption curve for the spread of these practices has an S-
shape. For example, Figure 1 shows the S-curve that
emerges from Ryan and Gross’s classic study (1943) of the
spread of hybrid corn in two Iowa farming communities.
This general shape captures the temporal dynamics en-
countered in a wide range of diffusion studies.

However, not all adoption curves are S-shaped. Of the
small fraction of curves that are not S-shaped, most display
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a single alternative shape, which I will call an R-curve. R-
curves lack the slow growth during the initial portion of the
spread, which characterizes S-curves (the bottom left part
of the curve in Figure 1). Instead, R-curves begin at their
maximum rate of growth (at t = 0) and then slowly taper
off toward equilibrium. R-curves describe, for example,
the cumulative adoption dynamics for the spread of the
practice of prescribing Tetracycline among “isolated”” doc-
tors (Coleman et al. 1966). They also characterize the spread
of milk bottle—opening behaviors among pigeons (Lefebvre
and Giraldeau 1994) and the spread of potato washing among
Japanese macaques (Kawai 1965; Tomasello 2000). Inter-
estingly, R-curves also arise from a variety of nonsocial
leaming processes in which individuals (humans) acquire in-
creasing proficiency in some skill or ability through prac-
tice (see Jovanovic and Nyarko 1995).

To explore the relative importance of environmental
(individual) learning versus biased cultural transmission, I
have analyzed the dynamics of three models: a generalized
individual-level environmental learning model, a biased
cultural transmission model, and a combined model. The
combined model integrates the first two models and allows
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Figure 1. Diffusion of hybrid corn seed in two lowa farming communities. This diffusion curve provides a protypical example of a “long-tailed”
S-curve. The dotted line marks the point on the curve with the highest rate of change (dg/dr). Adapted from Ryan and Gross 1943.
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Figure 2. The environmental learning model. In this model, each individual receives an independent “signal” (a piece of information) from the
environment (perhaps via experiments) about the difference in payoffs between two alternative behaviors. This signal is a random draw from the
above probability distribution, which has mean # and standard deviation @ = 1. The larger u is, which is the average (and modal) difference in
payoffs indicated by the signal, the more clearly this signal distinguishes Trait 1 from Trait 2. Symbol d sets an individual’s threshold of evidence
for adopting a trait—that is, how clear the information must be before the individual will switch. This means that P, gives the individual’s
probability of adopting Trait 1, P, gives their probability of adopting Trait 2, and L gives their probability of not changing (L gives their
probability of relying on unbiased transmission). This figure is adapted from Henrich and Boyd 1998.

us to compute the relative contribution of each to the S- and
R-adoption dynamics.

The Environmental Learning Model

Figure 2 graphically depicts a simple, though quite gen-
eral, model of environmental learning for two behavioral
traits.? In the typical diffusion of an innovation, tracking
only two traits is sufficient to capture the essential process:
Trait | represents the presence of the novel trait (the “inno-
vation”), and Trait 2 indicates the absence of the trait. If we
are, for example, studying the spread of a new nitrogen fer-
tilizer, an individual possesses Trait | if he or she uses the
fertilizer and possesses Trait 2 if he or she does not use the
fertilizer. The normal curve in Figure 2, with mean x4 and
variance 0%, shows the distribution of relative payoff infor-
mation provided by the environment. Individuals may ac-
quire this information through observation, experience, in-
teraction, or experimentation in the environment. For
simplicity, we will set ¢ equal to | and refer only to ef-
fects of changing u. During each time cycle (a fixed time
period), each individual in the population receives one
independent draw from this normal distribution. This

single draw provides a measure of the difference in payoffs
X between the two alternative behaviors. However, people
do not switch to a novel behavior based only on one piece
of information, unless the suggested payoff difference is
sufficiently large. How large this value of X needs to be
depends on the quality of environmental information avail-
able, which is captured by u, and on the individual’s
“threshold of evidence”—which is parameterized by d. If,
for example, the X drawn during a given cycle falls be-
tween —d and +d, the individual stays with his or her pre-
vious behavior (from the previous time cycle). However, if
the X drawn exceeds d, then the individual switches t
Trait 1. If people already possess Trait 1, they stick withit.
If X falls below —d, then the individual switches, mistak-
enly, to behavioral Trait 2 or retains it if he or she already
has it. This is a “mistake” because the situation depicted in
Figure 2, by the fact that # > 0, indicates that behavioral
Trait 1 is superior in the current environment. Superior
means that Trait | brings higher payoffs, on average, rela-
tive to whatever individuals want, strive for, or hope to
maximize.
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To illustrate this phenomenon, suppose a farmer, who
currently plants wheat variety A, decides to plant a small
paich of land with a novel wheat seed, variety B, as an ex-
periment.’ This experimental patch provides our farmer
with a single measure of average yield (in kilograms of
wheat harvested per hectare, for example), which we can
compare against the average yield for variety A. The differ-
ence between the yield per hectare for the experimental
patch and the average yield per hectare for variety A pro-
vides a value of X—an observed difference in payoffs be-
tween the two varieties. If the yield from variety B is about
the same as or less than that from variety A (implying X <
d), then our farmer does not change from variety A. How-
ever, if the yield from variety B is sufficiently greater than
the yield from A (X > d), then our farmer switches and
sows only variety B in the following year. Note, for this il-
lustration we assume that all other aspects of A and B (be-
sides yield) that might concern a farmer are identical.

Now, let us derive the population dynamics for the
spread of Trait 1 into a group in which everyone currently
possesses behavioral Trait 1. The symbol g gives the fre-
quency of individuals with Trait 1 in a large population,
while 1 — g gives the frequency of individuals with Trait
1. Initially, ¢ = 0, but with each time cycle we update the
value of g. The new value of g, in the next time cycle, is
represented as ¢’ (which reads “q prime”). Applying the
environmental leaming model described above and de-
picted in Figure 2 to a large population, we arrive at the fol-
lowing recursion:

¢ =q+(1—¢qP —qP, ©
——— =
Trait 1 Trait 2
adoprers adoprers

This says that the expected frequency of individuals with
Trait 1 in the next time step, ¢', equals the frequency of in-
dividuals with Trait 1 in the previous time step, g, plus the
proportion of individuals who had Trait 1 but received an
X value greater than d (so they switch to Trait 1) minus
that proportion of individuals who had Trait 1 but received
an X value less than —d (so they adopt Trait 2). Using the
fact that L=1 — P, —P, (see Figure 2 and Appendix A),
the above equation simplifies to Equation 1:
q' = Pl + lq (1)
The new frequency of individuals with Trait 1, g’, de-
pends on P, L, and g. P, is the probability of leaming the
new trait from environmental information obtained during
this time cycle. Restated, it is the probability that the pay-
off difference observed between the two behaviors exceeds
the threshold of evidence (d)—it is also the gray area under
the curve on the right side of Figure 2. L is the probability
that the environmental information is inconclusive and
represents the area between —d and +d under the curve in
Figure 2. Individuals who receive inconclusive informa-
tion will stick with their current behavior. Both P, and L

are derived from d and 4 via the distribution shown in Fig-
ure 2—Appendix A outlines this derivation. By iterating
Equation 1 recursively through successive time cycles, we
can plot its temporal dynamics and the cumulative adop-
tion curves that it generates. Figure 3 shows these dynam-
ics for a series of curves generated by Equation 1 for dif-
ferent values of d (with a fixed value of u).

For those readers who are, like me, interested in longer
term cultural evolutionary processes—in which the fre-
quency of different ideas, beliefs, values, and practices
may change over many generations—we can interpret
Equation 1 in a slightly different way. Suppose that during
each time cycle, or perhaps each generation, naive indi-
viduals (those who do not currently possess a particular be-
havior) first acquire a behavior (Trait 1 or 2) by unbiased
transmission—that is, by copying their parents or other in-
dividuals at random from the population. This form of so-
cial learning is called unbiased because, at the population
level, it simply replicates the distribution of behaviors
from the previous generation, g¢' = g. Then, after acquiring
a behavior, individuals obtain environmental information
about the relative payoffs of alternative behaviors (a value
of X). If the difference in payoffs is clear (that is, if X is
greater than +d or less than —d), then individuals adopt the
behavior indicated by their environmental information.
However, if X falls between +d and —d, individuals stick
with the behavior they acquire via unbiased cultural trans-
mission. Because the driver of change in this model lies
entirely in the evaluation of environmental information,
this setup also yields Equation 1. Boyd and Richerson
(1985, 1988) call this combination of unbiased transmis-
sion and (“individual”) environmental learning guided
variation. Because guided variation explicitly includes un-
biased transmission, I have called this the “environmental
leamning model” to include both the individual-level learn-
ing process I have described (which may occur many times
per generation) and its transgeneration counterpart, guided
variation (individual learning plus unbiased transmission).
We need these two conceptualizations to deal with both
diffusions that occur within a generation and longer term
diffusions that occur over several generations.

The environmental learning model (usually in its guided
variation form) captures the fundamental processes that
many economically oriented anthropologists believe un-
derlie much of sociocultural evolution. From this perspec-
tive, cultural evolution, behavioral change, and adaptation
result from individuals making cost-benefit decisions and
transmitting these decisions, or their behavioral outputs,
via social learning to their progeny. So, although most see
“culture” or “tradition” as part of the process, the actual
cultural transmission among individuals (or generations)
plays no dynamic role. Cultural transmission simply repli-
cates the existing distribution of behaviors, beliefs, and so
on (Binford 1983:222) without substantially altering their
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Figure 3. Environmental learning R-curves for different values of d. The symbol d, shown in Figure 2, sets an individual’s “threshold of
evidence” for changing behavior (traits). As d increases, the time required to reach equilibrium (the point when the frequency stops changing) is
longer, but the equilibrium frequency of the favored trait is greater (compare d = 1.0 and d = 0.5). Note that the equilibrium frequencies of the
curves d = 1.2, 1.4, and 1.6 are not shown—but these are greater than all of the other curves. This plot illustrates the tradeoff in environmental
learning between the speed of adoption and the accuracy of adoption.

distribution or form—that is, unbiased transmission. The ford, Chibnik, and Butler, that sociocultural evolution re-
driver of changes lies in the decision-making process, not sults from unbiased social learning plus opportunistic cost-
in the transmission process. Gladwin and Butler (1984: benefit analysis (environmental learning), is exactly what
210), following Chibnik (1981), articulate this approach in guided variation attempts to formalize. With this formali-
three steps: (1) individuals evaluate alternatives using low- zation, we can now better analyze its evolutionary dynam-
cost experiments to gather information, (2) these decisions ics. If the empirical data show that cultural transmission bi-
become codified in cultural rules, and (3) these rules are ases (specified below) do substantially affect the frequency
transmitted (unbiased) to the next generation. For Glad- of alternative cultural/behavioral variants from one gen-
win, Butler, and Chibnik, the driver of behavioral change eration to the next,* then the environmental leamning ap-
lies in the cost-benefit evaluation of alternatives based on proach fails to capture an important component of socio-
low-cost experimentation, not in the transmission of this cultural evolution.
information among individuals. Using data from the diffusion of innovations literature,
Similarly, while Harris maintains that “as a species we we can address the applicability of the environmental
have been selected for our ability to acquire elaborate rep- learning models. If the evaluation of costs and benefits,
ertories of socially learned responses” (1979:62), he be- based on environmental information, is the dominant force
lieves that sociocultural evolution is driven by individuals in the spread of novel practices, then empirically observed
opportunistically selecting among cultural/behavioral vari- cumulative adoption curves should reveal the basic R-
ants according to their cost-benefit ratios. The second as- shape generated by Equation 1 and shown in Figure 3. In-
sertion about cost-benefit ratios can only be true if the ~terestingly, however, most adoption curves constructed
apparent social learning abilities of humans do not sub- from empirical data have the S-shape shown in Figure 1,
stantially bias the intergeneration transmission of cul- not the R-shape seen in Figure 3. An examination of em-
tural/behavioral variants. Tomasello (2000:38) lays out pirical S-curves tells us that the change in g over each time
similar sequences of individual leaming and unbiased cycle must first increase to a maximum point somewhere
transmission in his recent book on human cognition and in the middle of the § and then begin decreasing toward 0.

culture (also see Boyd and Richerson 1985: ch. 4). Such a Computing Aq the change in g over each time cycle, we
process can also be gleaned from Binford (1983). Conse- 8t the following:
quently, the position of Harris, Gladwin, Tomasello, Bin- Ag=q¢ ~q=P ~ gl - L) @
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Note that both P, and | — L are positive constants, so Aq
must decrease as g increases. Consequently, Equation 1
will never produce an S-shape.

Although R-curves do occasionally appear in the diffu-
sion literature, S-curves are, by far, the dominant shape of
the temporal dynamics. Therefore, either this general envi-
ronmental learning model somehow fails to capture the
logic of humans as cost-benefit decision makers or behav-
joral change is not primarily driven by individual-level en-
vironmental learning. With this, it is important to realize
that, even if people from different social groups have dif-
ferent “logics” for assigning and evaluating costs and
benefits (varying # and d changes the perceived payoffs),
the temporal dynamics will remain R-shaped. So, although
some groups may have different R-shapes (or lack diffu-
sions at all), the above conclusion does not change. Later,
after I have presented the basic biased cultural transmis-
sion model and the combined model, I will modify this en-
vironmental leaming model and add the assumption that
individuals vary in their degree of “innovativeness.” As we
will see, this modification does not change the basic results
just derived.

The Biased Cultural Transmission Model

Instead of assuming that individuals acquire novel traits
by figuring things out, using payoff-relevant information
acquired directly from the environment, a substantial
amount of empirical work from throughout the social sci-
ences suggests that humans rely on social learning or cul-
tural transmission to acquire the majority of their behaviors
(Bandura 1977; Boyd and Richerson 1985; Cavalli-Sforza
and Feldman 1981; for a summary, see Henrich 2002).
However, people do not simply imitate random things
from random people. Rather, the social learning process
seems to contain a number of biases. Here, I will describe
three categories of transmission biases: direct bias, pres-
tige bias, and conformist bias (biased cultural transmission
is also termed “cultural selection”; see Durham 1991:192,
1992:334).

Direct biases result from cues that arise from the interac-
tion of specific qualities of an idea, belief, practice, or
value with our social learning psychology. The presence of
these cues makes people more (or less) likely to acquire a
particular trait. Evolutionary anthropologists have theo-
rized that natural selection favors a variety of such biases
in our psychology because they promote the acquisition of
fitness-enhancing cultural traits via social leaming (Boyd
and Richerson 1985; Durham 1991; Richerson and Boyd
1992). However, in thinking about direct bias it is impor-
tant to keep in mind two things. First, jury-rigged evolu-
tionary products, like human minds, are likely to contain
lots of accidental by-products and latent structures that cre-
ate biases among fitness-neutral behaviors, ideas, beliefs,
and values. Second, direct biases that led to the adoption of

fitness-enhancing behavior in ancient environments (like a
bias toward acquiring the practice of eating certain salty,
fatty foods) may now promote the adoption of quite
maladaptive practices. For example, the practice of pur-
chasing and using cooking oil spreads rapidly even
through remote villages—far from the reach of advertis-
ing—Dbecause there is something about the behavior or idea
that appeals to people.®

Under prestige-biased transmission, people copy ideas
or practices from individuals with specific qualities or at-
tributes, regardless of the characteristics of the behaviors
or ideas that are copied. Gil-White and I have demon-
strated that people will copy a wide range of traits from
prestigious or successful people, even when the behaviors,
ideas, or opinions have nothing to do with the person’s
prestige or success (Henrich and Gil-White 2001).° Ameri-
cans, for example, will use a certain type of cologne or
even shave their heads if Michael Jordan does (or they be-
lieve he does), despite that fact that Jordan’s scent and
hairstyle are probably not connected to his basketball
prowess, prestige, and overall success.

Finally, under conformist transmission, humans prefer-
entially imitate ideas and behaviors that are expressed by a
majority of the group over traits expressed by the minority,
even when their personal opinions or behavior will not be
known by the other group members (Baron et al. 1996;
Bettinger et al. 1996:151; Insko et al. 1985; for theoretical
treatment, see Henrich and Boyd 1998). All three of these
transmission biases rely on cues that may, in particular
cases and perhaps on average in some ancestral human en-
vironment, arise indirectly from the difference in fitness
payoffs between alternative behaviors (« in Figure 2). But
in more recent human environments there is no reason to
assume any consistent connection; even if there were such
a consistent connection, the temporal dynamics of diffu-
sion driven by environmental learning will still look quite
different than those produced by biased transmission.

Equation 3 formalizes biased cultural transmission and
was derived using basic replicator dynamics (Boyd and
Richerson 1985; Weibull 1995). As in Equation 1, g repre-
sents the frequency of individuals with the novel behav-
ioral trait (Trait 1), and g’ is the frequency of individuals
with Trait 1 in the next time cycle (Appendix A supplies a
simple derivation):

g=q+(l —q)qr,~r)=q+q(1 - g)B A3)
The term r, — r», or simply B, ranges from — 1 to 1 and rep-
resents the overall difference in the replicatory propensities
of Traits 1 and 2. These replicatory propensities may de-
pend on particular characteristics of Trait 1 and/or 2 (direct
bias) that may or may not be indirectly linked to payoff dif-
ferences. Or they may depend on the prestige (or success)
of the individual(s) currently possessing the trait (prestige
bias), which also may or may not be an indirect measure of
payoffs. Or they may depend on the current frequency of
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individuals possessing the trait (conformist transmission),
which may or may not be indirectly linked to payoffs. For
now, we will leave conformist transmission out and as-
sume that B aggregates only the effects of prestige and di-
rect bias. We will also assume that these biases are not a
function of either g or time.” Later, I will incorporate con-
formist transmission (which is frequency dependent) and
examine its influence on diffusion. The reader should be
aware that Equation 3 is not some special case of cultural
transmission but, rather, a general form for any replicator
process. It has been independently rederived for a variety
of purposes in a number of different fields—including eco-
nomics (Gintis 2000; Weibull 1995), genetics (Hartl and
Clark 1989), epidemiology (Waltman 1974), and cultural
transmission (Bowles 1998; Boyd and Richerson 1985;
Cavalli-Sforza and Feldman 1981)—and is often applicable
even when traits are continuous (Henrich and Boyd 2001).

Intuitively, we can understand Equation 3 by consider-
ing a large population in which each individual encounters
one potential “cultural model” (i.e., another person whom
one might leam from) during each time cycle, which could
be one year, one day, one month, and so on. Under pres-
tige-biased transmission, this individual compares his or
her success (e.g., in wealth, number of admirers, or valued
skills) to the success of the potential cultural model. If the
model has greater success and a different trait than the in-
dividual, the individual switches and adopts the trait of the
more successful model. If not, the individual keeps his or
her original trait. Or, under direct bias, the individual com-
pares the qualities of his or her trait to the qualities of the
trait possessed by the cultural model. If the person favors
(for whatever psychological reason) the trait possessed by
the model over the trait he or she currently possesses, he or
she switches and adopts the model’s trait. If we then ask
(for either the direct- or the prestige-biased cases), what the
expected frequency of one of the traits (i.e., “Trait 1”’) after
one unit of time is, we arrive at Equation 3. This expression
tells how the frequency of the traits will change from one
time step to another because of the social learning pro-
cesses described above. As I have said, this intuitive layout
can be modified in a variety of sensible (and silly) ways
that all yield Equation 3 or something quite similar (Ap-
pendix A formalizes this).

Figure 4 presents four cumulative adoption curves gen-
erated using Equation 3 for different values of B. Note the
similarity between the empirical curve in Figure | and the
curves in Figure 4. In fact, the different S-shapes captured
in Figure 4 resemble a wide range of the empirical adop-
tion curves found in the diffusion of innovations literature.
This similarity suggests that cultural transmission models
may capture an important component of human behavioral
change.

The Combined Model: Environmental
Learning + Biased Transmission

So far, I have contrasted two quite different models of
human leaming. However, it seems both intuitively and
empirically true that humans do both biased cultural trans.
mission and environmental leaming. That is, we do some
selective imitating and some figuring things out on our own,
Boyd and I have developed this idea theoretically, using
computer simulations that model the biological evolution
of the parameter d—which, as I discussed earlier, deter-
mines an individual’s degree of reliance on environmental
learning versus cultural transmission (Henrich and Boyd
1998). Under a wide range of conditions, in both spatially
and temporally varying environments, this theoretical
work suggests that our reliance on environmental learning
is a small, but important, component of human adaptive
behavioral plasticity. Consequently, the question becomes,
How much biased cultural transmission must be added to
environmental learning (or the guided variation model) to
generate the empirically observed S-curves? Or what is the
predominate force in human behavioral change?

To address this, we combine Equations 1 and 3. How-
ever, because simply substituting Equation 1 into Equation
3 gives a slightly different answer than substituting Equa-
tion 3 into Equation 1,} an additional step is required. We
assume that, during each time cycle, not everyone attempts
environmental learning or biased transmission. Instead,
only a fraction of the population updates behavior based on
one of these two sources of information. For environ-
mental learning, the symbol £ represents the fraction of in-
dividuals in the population who consider updating their be-
havior via environmental learning per unit of time. This
can be thought of as the update rate for environmental
learning or as the probability of using environmental leam-
ing in each time cycle. Similarly, the symbol y represents
the fraction of individuals in the population who update
with biased cultural transmission per unit of time. In both
cases, At represents one unit of time or one time cycle.
Therefore, §Ar provides the fraction of individuals who
consider updating with environmental learning in each
time cycle, while y At gives the fraction of individuals who
deploy biased transmission in a given time cycle. Applying
this additional step to Equation | yields the following:

g =q(1 —EAD+ (P, + LAt =g+ EA(P, +[L— 1)) @
Applying the same process to Equation 3 yields Equation 6:
q'r=q(1 — yA1) +yAq +4{1 — q}B) = q +yAng +4(1 — qIB) ()

Because we want to arrive at the derivative of q with re-
spect to time, we substitute Equation 4 into Equation 5 (of
Equation 5 into Equation 4), solve for Ag/At, and then take
the limit of Ag/At as At approaches 0. This gives us Equa-

tion 6, which describes the rate of change in the frequency
of Trait 1 as a function of g:
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Figure 4. Biased cultural transmission dynamics using four different values of B. As B decreases, the amount of time to equilibrium increases,

but the final equilibrium value remains 1 (everyone adopts).
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An examination of the typical S-curve (Figure 1) sug-
gests the general form of dg/dt. The rate of change of the
frequency of the novel trait must first ascend to a peak,
somewhere in the middle of the S-curve, and then decline
to 0. Figure 5 plots dg/dt for both the combined model
(CM, Equation 6) and the environmental learning model
(ENLR, Equation 4). For ENLR, the maximum value of
dg/dt occurs at g =0, so no S-curve is generated. For the
biased cultural transmission model, which is not shown,
the curve has the same shape as the CM curves, except the
maximum value of dg/dt (the middle of the S) always oc-
curs at g = 0.50. For the CM (without conformist transmis-
sion), the maximum value of dg/dt occurs below g = 0.50.
When this maximum value occurs between g =0 and g =
0.50, some form of S is produced. When this maximum
value occurs below g = 0, the part of the dg/dt curve be-
tween ¢=0 and g =1 looks just like the environmental
learning curves. Consequently, an R-curve, not an S-curve,
is produced. To visualize this, imagine sliding the CM
curve, shown in Figure 5, to the left until the maximum
value of dg/dt drops below 0—the part of the CM curve on
the right side of 0 resembles the ENLR curve.

To derive the conditions under which the CM produces
an S-curve, we take the derivative of Equation 6 with re-
spectto g, set it equal to 0, and solve for g. This provides an
expression for the value of g when dq/dt is maximized:

2 zey

Dmax

In order to produce the S-shape, mathematically speaking,
gmax Must be greater than 0. So, solving Equation 7 for gmax
> 0 yields the following:

‘5“ §0-D_gu - @®

Because & and y are both update rates, we can simplify
Equation 8 by defining ¢ = £/y, where ¢ represents a ratio
of the fraction of the population that updates via environ-
mental learning to the fraction that updates via biased cul-
tural transmission. If the update rates are equal, then¢ = 1;
if people update their behavior more frequently using envi-
ronmental information, then ¢ > 1; if people use cultural
transmission more frequently, then ¢ < 1. Figure 6 graphs
the S- and R-regions of B and L. This plot shows that in or-
der to consistently produce S-curves, either B, the replica-
tory bias created by the trait or the individual(s) possessing
the trait, must be big, or L, the degree to which humans rely
on cultural transmission over environmental learning, must
be big. Figure 6 and Equation 8 provide the minimum
mathematical conditions to produce an S-curve. However,
for humans to discern an S-shape in the curve, g, . should
be set at 0.1 or more. This shrinks the region of B and L
that generates S-curves, thus making the argument
stronger. Below I discuss why I think it is L that is consis-
tently big, and not B.

Figure 7 shows the effect of moving the value of ¢ away
from 1. Increasing the update rate of environmental learn-
ing relative to cultural updating (i.e., changing ¢ to 1.2)
moves the B-intercept (at L = 0) up to 1.2, which shrinks
the S-region—which is the plot area to the right of the
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Figure 5. The rate of change of the frequency of the novel trait under the environmental leaming model (ENLR) and under the combined model
(CM). The vertical line at g =0.50 shows the dg/dt maximum value for the biased cultural transmission model (BCT)—otherwise the shape of

BCT resembles that of CM.

curve. Conversely, increasing the cultural update rate rela-
tive to environmental learning (decreasing ¢ to 0.8) moves
the B-intercept down to 0.8 and expands the S-region. De-
pending on the details of a particular diffusional situation,
one might argue that ¢ is greater or less than 1, but its ac-
tual value will be difficult to measure empirically because
it depends partly on human psychology and partly on envi-
ronmental constraints. For much of the coming discussion
I assume that ¢ = 1. For empirical purposes, it is best to in-
corporate’yand £ into Band 1 — L, respectively.

When Biased Transmission Opposes Environmental
Learning

So far, I have considered only the situation in which
both biased transmission and environmental learning favor
the spread of the novel trait. In this section, I explore the
temporal dynamics of the diffusion of a novel trait when
individual learning successfully spreads the novel trait
against the force of biased transmission—that is, when B is
negative so the transmission bias favors Trait 2. In the next
section, I analyze the opposing case, in which biased trans-
mission spreads a novel trait in the face of environmental
learning. This occurs when environmental information in-
dicates that a trait is not beneficial but transmission biases
spread it anyway. By exploring these two situations, we

can ask which set of dynamics more closely matches the
empirically observed temporal dynamics of trait diffusion.

Figure 8 shows the adoption curves for five different
sets of parameters (B, L, and P,). As either L or B increases
(B is negative), the equilibrium value of g rises and the
curves ascend more quickly. However, nothing remotely
resembling an S-curve emerges. Equation 8 tells the same
story. The right side of Equation 8 is always positive (or0),
and B is always negative in this case, so the condition in
Equation 8 is never satisfied, and S-curves never emerge.
Given that S-curves are empirically rampant in diffusional
contexts, the situations in which individual-level environ-
mental learning overpowers biased cultural transmission to
spread a beneficial trait must be relatively rare. Two possi-
ble explanations for this present themselves. One suggests
that our database is somehow biased against these kinds of
diffusions, so they only seem rare—somehow these kinds
of diffusions are systematically omitted from study. The
second explanation is that L (or more precisely d) is
large—meaning that biased transmission is the predominate
component of human cognition. In the future, researchers
should look for diffusional cases in which trial-and-error
learning clearly favors one trait while transmission bias fa-
vors another (e.g., When only low-status people initially
adopt a trait like boiling drinking water).
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Figure 6. The regions of B and L that produce S- and R-dynamics. This plot assumes that the update rates for environmental leaming and cultural
transmission are equal,¢ = 1. This plot suggests that L (or & via Figure 2) is probably large, implying that unless payoff information is very clear,

people rely on biased cultural transmission.

When Environmental Learning Opposes Biased
Transmission

What do the curves look like when biased transmission
swims upstream against environmental learning? Examin-
ing Equation 8 alone suggests that S-curves may or may
not be generated, depending on the values of L and B. This
condition holds even when environmental information
does not favor the novel trait. Because the bias (B) must
overcome environmental learning, we can use Equation 8
to set B to the maximum value that still produces R-curves,
B=¢ (1 — L). If we substitute this into Equation 6, set it
equal to 0, and solve for g, we get Equation 9:

Pl— Pl
%~ \T=D" \PI+F2 ©

This is the equilibrium frequency of the novel trait when an
R-curve is produced by biased transmission flowing up-
stream against environmental learning. Remember, in this
zase P, is less than P, because environmental infrrmation
pposes the spread of the trait. Consequently, the fre-
Juency produced by Equation 9 is small. Typically, this
*quilibrium value is so small that it would never “count” as
liffusion. Figure 9 shows eight curves for differing values
f B, L, and P that illustrate the basic point. All diffusions
hat lead to high equilibrium frequencies of Trait 1, and are

driven by biased transmission, generate S-curves, not R-
curves. Curve 8, the only R-curve in Figure 9, illustrates
the case when B =¢ (1 — L). The equilibrium frequency
of Curve 8is0.32.

Conformist Transmission and Long Tails

Figure 1 displays an interesting feature that suggests an-
other form of biased cultural transmission—conformist
transmission—may also be at work. Note the slow growth
of g during the initial stages of the diffusional process—I
call this slow growth a “long tail” (Figure 1). It took nine
years for the frequency of hybrid planters to reach 0.20 but
only six more years for it to reach fixation at 0.99. To ac-
count for this recurrent phenomenon of long tails, we can
incorporate a simple conformist component into the exist-
ing model and then examine its effects on the temporal dy-
namics of adoption.

So far, we have dealt with B, the replicatory or transmis-
sive bias on the novel trait, as a constant in any particular
situation, not as a function of time or frequency. Now B
has two components, a constant part and a frequency-
dependent part, which are shown in Equation 10:

B=b1—a)+a(2q-1) (10)

The second term in Equation 10, & (2 — 1), is the component
of the overall bias contributed by conformist transmission.
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Figure 7. S- and R-curve B-L regions for different values of ¢. As ¢ increases, the size of B-L regions that produces S-curves decreases. This
means that if people update via environmental leaming more frequently than via cultural transmission, then the B-L combinations that produce

S-curves are fewer.

The symbol a, which varies between 0 and 1, gives the
relative strength of conformist transmission in human cog-
nition—it scales the cognitive weight given to the fre-
quency of a behavior relative to other biases. Generally, it
is best to consider a small, for when a is large, few if any
traits can spread—for example, when a > 0.5, nothing rare
ever spreads. The term 2g — 1 varies between —1 and 1.
When the frequency of the novel trait is low (less than 50
percent), this conformist component is negative, which re-
duces the value of the total bias (B) and may actually make
it negative (depending on the relative sizes of the other
components). When g > 0.50, this conformist term in-
creases the overall size of the bias. The other term, b(1 ~
a), is the contribution to the overall bias made by non-fre-
quency-dependent direct biases and prestige biases. The
symbol b is the constant bias (which can vary from —1 to
1), while 1 — a gives the weight accorded to the noncon-
formist component of the transmission bias. Substituting
Equation 10 into Equation 6 yields the following:

%fﬂ". +[L - 11g) +y9(1 — ¢){b(1 — a) +a(2q — 1)} an
Using this expression we can follow the same procedure as

before to derive the conditions for S-curves. Note the simi-
larity between Equations 14 and 9:

b> E(l —L)+ya=¢(l—L)+a (12)
y(l-a (1-a)

Figure 10 illustrates the curves for Equation 12 when ¢
= 1. As the strength of conformist transmission increases,
the region of b and L values that generates S-curves
shrinks—remember, S-curves begin appearing as one
moves to the right of, or above, the curve. Consequently, if
conformist transmission is even a small component of hu-
man psychology, we should expect either (1) that all the
various values of b represented throughout the diffusion of
innovations literature are quite high or (2) that the value of
L (or d) in human psychology is substantial—otherwise R-
curves would be more common.

Returning to the question I asked at the beginning of this
section: Can conformist transmission account for the long
tail observed in Figure 1? Figure 11 shows the temporal
dynamics for a series of a values, ranging from 0 to 0.27.
Comparing Figure 1 and Figure 11, we observe that con-
formist transmission does generate the long tails observed
in some empirical data. Assuming that ¢ is fairly small,
such tails occur when the biases generated by the noncon-
formist components of our cultural capacities are relatively
weak (b = a). When these biases are large (b > a), the ef-
fect of a disappears.
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Figure 8. Temporal dynamics when ENLR spreads a novel trait against BCT for five sets of parameters. None of these is an S-curve.

More generally, this slow growth period is a common
feature of many adoption curves. Rogers (1995:259-260)
explains that potential adopters initially seem resistant to
new ideas until a “critical mass” is achieved and the diffu-
sional process “takes off.” This intuitive explanation sup-
ports the idea, formalized in conformist transmission
(Boyd and Richerson 1985), that individuals use the fre-
quency of a trait as an indirect indicator of its worth.
Hence, a trait’s frequency inhibits its diffusion when it is
rare but encourages the diffusion once the trait becomes
common.

Conformist transmission can also help in predicting the
takeoff points described by applied diffusion researchers.
In attempting to actively spread novel innovations, govern-
ments, states, and organizations will sometimes provide
“pump-priming” incentives to adopters, often in the form
of direct cash payments, until the innovation spreads past
some critical frequency (often thought to lie between 20
and 30 percent of potential adopters; Rogers 1995:221).
Once this threshold is reached, the innovation is consid-
ered self-sustaining, which means that it will continue to
spread on its own. Note that the empirical existence of
takeoff points supports both the claim that L is big and the
claim that conformist transmission is real (but small). If we
do not assume that L is big, then environmental learning
will always spread beneficial traits and takeoff points
should not exist. Assuming that L is big, we can derive a
simple expression for the takeoff frequency using Equation

10.° With this assumption, the diffusional process becomes
self-sustaining when

B=b(l -a)+ al2g-1)>0 (13)

A diffusional process is not self-sustaining when the mag-
nitude of the conformist component of B, kx(2q — 1)I, ex-
ceeds b(1 — a), thereby making the overall bias less than
0. Remember, the conformist component is negative when
q <0.50. Solving Equation 13 for the takeoff frequercy,
q,, requires setting B = 0 and solving for g:

=1_-6-0a (14)

2 2a

This is the value of ¢ at the point where B crosses over
from negative to positive values.

Equation 14 tells us two things. First, if it exists, the
takeoff frequency lies between 0 and 0.50. And second, if
b(1 — a)/2a > 0.5, then the process will never be self-sus-
taining. Empirical data indicate that pump-priming incen-
tives do often work (but not always) and that takeoff points
always seem to lie between 0 and 0.5 (Rogers 1995)."°

9

Modifying the Environmental Learning Model
Still Will Not Produce S-Shapes

A great deal of research on diffusion has adopted the in-
tuition that diffusional dynamics, including the S-shape,
result from differences among individuals in their degree
of “innovativeness” or their fear of uncertainty. For exam-
ple, Rogers writes:
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Figure 9. Temporal dynamics when biased transmission spreads a novel trait against individual leaming for eight sets of parameters. Values of
B, L, and P, (respectively) for Curve 1: 0.45, 0.98,0.001; Curve 2: 0.30, 0.98, 0.001; Curve 3: 0.30, 0.94, 0.003; Curve 4: 0.15, 0.98, 0.001; Curve
5: 0.90, 0.80, 0.01; Curve 6: 0.5, 0.7, 0.03; Curve 7: 0.6, 0.8, 0.01; and Curve 8: 0.2, 0.8, 0.02. For Curve 8, B =¢(1 — L), so this is technically
an R-curve, but its low equilibrium frequency means that it probably would not “count” as a successful diffusion (geq = 0.32).

Many human traits are normally distributed, whether the trait
is a physical characteristic, such as weight or height, or a be-
havioral trait, such as intelligence or the learning of informa-
tion. Hence, a variable such as the degree of innovativeness is
expected also to be normally distributed. [1995:258]

The idea is that a few individuals with a high degree of in-
novativeness adopt early, most people adopt somewhere in
the middle, and a few stragglers, with low innovativeness,
adopt late. Although it may be true that individuals vary in
their degree of innovativeness," building this into the envi-
ronmental leaming model does not produce the anticipated
S-dynamics, as I will demonstrate. Furthermore, I have al-
ready shown that S-dynamics can be produced without as-
suming that people are different (see also Cavalli-Sforza
and Feldman 1981). All the models so far have assumed
that people are psychologically and socially identical, yet
they still produce S-curves under a wide range of condi-
tions.

We can construct environmental learning models that
incorporate individual variation in two ways: (1) assume
individuals do environmental learning first and then, if
they remain uncertain, rely on unbiased transmission (copy
someone at random)-—this provides a transgenerational
model (guided variation); or (2) assume that individuals do
repeated trials and that the dynamics of learning are fast
relative to an individual’s lifetime (or that individuals live

forever). In the previously described environmental leam-
ing model, the parameter d (see Figure 2) represents an in-
dividual’s threshold of evidence or his or her willingness to
proceed under uncertainty. Innovative individuals are
those willing to adopt a new trait based on limited (uncer-
tain) evidence. Thus, this parameter captures what many
researchers mean by “innovativeness.” Following the
standard approach from the diffusion literature—to class-
ify people into adopter categories—I define five types of
individuals: innovators, early adopters, early majority,
later majority, and laggards (Rogers 1995:262). The sub-
script i indexes these categories from 1 to n (n =5 in this
case). Each category i is characterized by its own value, d;
Innovators have the smallest value of d, and laggards have
the largest value of d. Each value of d, generates, via the
cumulative normal distribution shown in Figure 2, corre-
sponding values of P, and L,. For the first version of the
model (with unbiased transmission), the frequency of the
novel trait among members of category i (e.g., early adopt-
ers) in the next time cycle is shown in Equation 15:

¢i=Py+ql, s
Further, assume that the symbol F, represents the pro-
portion of the total population that adopter category i com-

prises. For example, if 10 percent of the population are lag-
gards, then F, =0.10. To find the new frequency of the
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Figure 10. S-curve regions for different strengths of conformist transmission (¢ = 1). Increasing the strength of conformist transmission, a,
reduces the size of the B-L region that produces S-curves. However, given that other evidence indicates the existence of a conformist component,

this plot further indicates that L (or d) is probably large.

novel trait in the overall population, we compute the ex-
pected value of Equation 15:

q=Eq)= Eil"i(Pn) + ?Fi(qu) =P, +qL (16)
Equation 16 demonstrates that, when individuals vary in
their innovativeness, the cumulative adoption curves de-
pend only on the average values of P, and L (regardless of
their distribution). This means that Equation 16 behaves
just like Equation 1 and, therefore, does not produce S-
curves.

In the second version of individual variation, instead of
unbiased transmission, I assume that the dynamics of
learning are fast relative to the lifetimes of individuals.
Thus, we get Equation 17:

g =P;+ql an
The only difference between Equations 17 and 15 is the
subscript i on g. This occurs because, instead of copying
someone at random from the population every time period,
these long-lived individuals simply stick with their current
behavior—that is, the environment does not provide suffi-
ciently convincing data to justify a change. Taking the ex-
pectation of ¢’ to get ¢', we arrive at Equation 18:

q =E(@)=EP)+ELg)=P, +4qL+COVL) (18)

NS

Does Equation 18 produce S-curves? We have already
seen that the terms labeled “NS” in Equation 18 will never
produce an S-curve. The final term, COV(qL), is the co-
variation between g, and L, which varies for different val-
ues of g (or over time). At t=0 (and g =0), COV=0. In
Figure 12, although the frequency of Trait 1 rises for each
of the subgroups in the population (g,), the subgroup with
the smallest value of 4 learns the novel trait most
quickly—note that the different values of g, can be ob-
served at the points where the vertical line crosses the dif-
ferent curves (which have different values of d). The in-
itially rapid adoption of the trait by more innovative
individuals (those with lower d values) generates a nega-
tive covariation between L, and ¢, This negative associa-
tion remains until the curves cross one another in the mid-
dle of Figure 12. After this crossover, the COV(qlL)
crosses through O and stabilizes at a positive equilibrium
value. These dynamics for covariation remain robust be-
cause more innovative individuals adopt novel behaviors
more rapidly but achieve lower equilibrium values of g,
than less innovative individuals. Lower equilibrium values
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Figure 11. Adoption curves for different values of a. As the size of the conformist component increases, the initial takeoff stretches out
Eventually, as a rises, the diffusion of the novel trait will be prevented by conformist transmission.

occur because more innovative individuals are subject to
more erroneous switchbacks, as their standard of evidence
for changing behaviors is lower—it is the price of innova-
tiveness.”? The dynamics of COV(gL,), when added to the
standard R-shaped curves produced by the NS terms in
Equation 18, will never produce an S-curve.

Many researchers believe the S-shaped cumulative
adoption curve to be the product of an underlying, nor-
mally distributed “time-to-adoption” curve that captures
the varying degrees of innovativeness distributed through-
out the population. In this view, “time to adoption” acts as
the inverse of innovativeness. When researchers test their
empirically derived Ag/At (dg/dt) curves for deviations
from normality, sometimes they pass (and cannot be dis-
tinguished from a normal distribution), and sometimes
they do not. When such curves do not pass the normality
test, researchers claim that they “approach normality.” For
example, using the Iowa farmer data (Figure 1), re-
searchers went to great lengths to show that the data were
normally distributed. Yet they failed to show normality be-
cause of the distribution’s long tail. However, from the
perspective I have presented here, there is no reason to ex-
pect underlying normality. Often, Equation 11 does pro-
duce time-to-adoption distributions that look approxi-
mately normal, but knowing if they are approximately
normal or not does not tell us anything more about the un-

derlying social-decision processes. For example, the time
derivative of a logistic curve (which is appropriate for bi-
ased transmission) looks quite normal and would certainly
appear normal if one sampled from it. More importantly,
Equation 11 can also produce underlying, nonnormal,
time-to-adoption distributions that are much more similar
to those produced by the diffusion of hybrid corn or of Tet-
racycline than to any normal distribution.

Many efforts to fit the S-dynamics of the diffusion lit-
erature have been made, especially in the marketing and
new product literatures (e.g., Bass 1969; Jensen 1982,
Kalish 1985; Oren and Schwartz 1988). For a long time,
research-ers have recognized that logistic curves in various
forms can fit many of the S-curves fairly well. Unfortu-
nately, the parameters in these functional forms have little
meaning because such “curve fits” lack any a prion theo-
retical foundation in human psychology or decision mak-
ing (Bass 1969). However, by assuming that individuals
vary in their degree of risk aversion in particular ways,
some research-ers have managed to construct environ-
mental learning models that under some conditions wil
generate logistic S-curves (Jensen 1982; Kalish 1985; Oren
and Schwartz 1988). Although these models can produce
S-curves, based on individual differences in risk aversion
and Bayesian leamning processes, the circumstances that
produce the S-dynamics depend critically on the initial
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Figure 12. Environmental learning dynamics for four subgroups with differing degrees of innovativeness (d;). During the first portion of the
diffusion a negative covariation builds up between d; and g, but then as certain categories of people reach equilibrium the covariation crosses over
and becomes positive. This occurs because of the aforementioned tradeoff between speed and accuracy in environmental learning.

distribution of beliefs in the populations, the specific shape
of the utility curves, and the details of the information-
gathering processes. In Oren and Schwartz’s model
(1988), for example, deriving the logistic form depends on
assuming both a constant proportional risk aversion
U[x)U’'[x] = constant) and that risk aversion is expo-
nentially distributed across the population. No empirical
justification for either of these rather narrow assumptions
is provided. Without any empirical support, it is difficult to
believe that these assumptions are as robust across the
world’s populations as are the S-dynamics of diffusion.
Similarly, under some conditions the environmental learn-
ing model in this article will produce S-curves if innovative
individuals (those with low thresholds of evidence) are as-
sumed to acquire or process information better than less in-
novative people. However, getting an S depends on exactly
how innovativeness and information-processing abilities
are distributed across the population.

Some readers may criticize this analysis because they
realize that a wide variety of mathematical formulations of
environmental learning or rational calculations could gen-
erate S-curves, and I have not begun to exhaust the possible
formulations. This is true. However, merely having equa-
tions with the symbols arranged in a particular fashion is
not a sufficient riposte. In my view, the trick is to formulate
a leaming model that is rooted in human psychology, is
evolutionarily plausible, is empirically grounded in what
we know about human cognition, and still produces S-
curves under a wide range of general conditions. I hope
that skeptics who favor environmental learning will en-
deavor to generate and test such competing models.

Discussion and Summary

Many scholars have the intuition that cultural transmis-
sion is, at best, a minor force in human behavior and be-
havioral change (Buss 1999; Harris 1979; Pinker 1997;
Stigler and Becker 1977; Tooby and Cosmides 1992).
However, if cultural transmission is merely a weak compo-
nent of the psychological processes that generate human
behavior—meaning L is fairly small—then we would ex-
pect the real world, and the diffusion of innovations litera-
ture, to contain a large proportion of R-curves relative to
the proportion of S-curves. If people have small L values,
S-curves should result only when the replicatory bias (B) is
quite high. However, as I mentioned earlier, B is generated
in part by the qualities of the trait itself (e.g., eating high-fat
foods or believing in a good god) and by the qualities of the
trait’s possessors (i.e., their local prestige or success). So B
values should vary substantially from situation to situation,
and (if L is small) we should observe R-curves when B is
medium or low. However, in the real world (or at least in
the available empirical data), R-curves are relatively rare
while S-curves are rampant. This suggests that biased cul-
tural transmission dominates the diffusional process and
that L must be pretty big—or somehow hundreds of re-
searchers studying everything from the spread of insecti-
cides among Colombian peasants to the diffusion of *“poi-
son pills” among Fortune 500 companies must have
systematically biased the database and selected only traits
with very high bias values (B).

Further evidence for a substantial reliance on cultural
transmission comes from the spread of maladaptive or
costly behavioral traits. My analysis indicates that
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maladaptive traits may spread against the force of individ-
ual learning—to produce an S-curve—as long as L and B
are sufficiently large. For example, the practice of bottle-
feeding infants spread throughout the Third World despite
the fact that this practice produces higher rates of sickness,
infection, and death in infants under Third World condi-
tions than does breast-feeding (Rogers 1995). Such costly,
maladaptive practices abound in the anthropological litera-
ture (Edgerton 1992). In many societies, food taboos re-
strict the consumption of nutritionally valuable foods
(Baksh 1984; Descola 1994; Wilbert 1993). Even in places
where protein and dietary fat are limited, people still refuse
to eat valuable nutritional resources. The Machiguenga of
the Peruvian Amazon, for example, would not consider
eating snake meat, even when the dead snake is known to
be nonvenomous. Similarly, the Warao, who inhabit the
extremely marginal environs of the Orinoco River delta,
refuse to hunt large mammals (which include some of the
most valuable animal resources in South America) because
they “have blood like people” (Wilbert 1993:18). Further-
more, nearly one-half of all cultures surveyed throw out the
valuable colostrum that precedes mother’s milk and helps
infants develop their immune systems while providing es-
sential minerals (Morse et al. 1990). Without the predomi-
nance of biased transmission, it would be difficult to ex-
plain the prevalence of costly, maladaptive traits in
populations throughout the world. Remember, most envi-
ronmental learning models, like Oren and Schwartz’s
(1988), predict that only beneficial, utility-maximizing, or
adaptive traits will spread through populations, but that is
not all we observe. Finally, even if we assume that differ-
ent “cultural logics” could cause individuals from particu-
lar groups to evaluate the costs and benefits of seemingly
“maladaptive practices” (“maladaptive” to an outsider) in
such a way as to favor their spread, we would still expect to
observe R-shaped diffusion curves (if environmental learn-
ing is the dominate process). Yet we do not.

On the flip side, if our reliance on biased transmission
were weak (if L were small), then environmental leamning
would frequently spread beneficial traits against the tide of
negatively biased cultural transmission. However, my
analysis indicates that we should record an R-curve every
time our cost-benefit analysis overcomes our social learn-
ing tendencies. Yet R-curves are rare, so biased transmis-
sion is most likely a substantial component of human be-
havioral plasticity.

Finally, how can environmental, cost-benefit learning
account for the empirical phenomena of long tails and
takeoff points? Why do diffusional processes sometimes
begin so slowly and finish so rapidly? Why doesn’t this oc-
cur other times? Why do some behaviors have threshold
adoption frequencies at which they begin spreading on
their own (without people being paid for adoption), even
when the behavior later turns out to be a bad idea? As I
have described, the simple models of biased transmission

(with a small conformist component) presented in this arj.
cle can account for all these phenomena, but it appears yp-
likely that the environmental learning approach, based oy
the direct evaluation of payoffs, can be modified to ac.
count for them as well.

What Kind of Information Flows through Social
Networks?

Many social scientists believe that by diffusing “infor-
mation,” social networks generate the classical diffusional
dynamics. Rogers writes that “[diffusional networks] con-
vey information to decrease uncertainty about a new ideg”
(1995:281). By using the term innovation-evaluation in-
Jformation Rogers captures what I describe above as “pay-
off-relevant” information, which is the essential ingredient
in the individual-level environmental learning model (and
most cost-benefit approaches). Although the biased cul-
tural transmission processes I have modeled here do in-
volve the transfer of information among individuals, this
imitation process does not directly involve the transmis-
sion of innovation-evaluation information—that is, infor-
mation used by individuals to evaluate the costs and bene-
fits of alternative practices. Biased imitation involves
copying an idea or practice for reasons not directly related
to its costs and benefits. From this perspective, information
remains the key element flowing through social networks;
but rather than information about payoffs (direct cost-
benefit information), it is information about such things as
who have adopted a particular practice (how prestigious
they are) or how many others have adopted the practices.
The available empirical data (from both the field and the
laboratory) support the kinds of imitation processes I have
described, not the innovation-evaluation hypothesis.

For example, in prestige-biased transmission, individu-
als copy traits possessed by prestigious individuals, regard-
less of whether these traits affect the success of the presti-
gious model or the copier (Henrich and Gil-White 2001
summarizes both theory and evidence). Generally, the
enormous importance of what diffusion researchers call
*“opinion leadership” confirms the theoretical predictions
of prestige-biased transmission (Rogers 1995:293). For
example, the same farming practice will spread rapidly in
places where the local high-prestige individuals favor the
novel idea but will entirely fail to spread in other places
where the prestigious individuals reject the novel practice.
Similarly, Van den Ban (quoted in Rogers 1995) effec-
tively demonstrates the importance of prestige-biased
transmission over evaluative information processing in his
study of farmers in the Netherlands. He shows that small-
scale farmers copied the farming practices of prestigious,
large-scale farmers even when such practices were clearly
inappropriate for their particular situation.

Like prestige-biased transmission, conformist transmis-
sion does not depend directly on the costs and benefits of
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alternative behaviors, but it still seems to be an important
component of adoption dynamics. Besides the long tails
and takeoff points observed in many diffusional curves,
conformist transmission can also account for the spatial or
sociospatial clustering of traits frequently observed in the
diffusion literature. For example, in studying the spread of
contraceptive methods in rural Korean villages, Rogers
and Kincaid (1981) found that choices clustered by village:
there were “pill villages,” “TUD villages,” and even “va-
sectomy villages.” All these contraceptive methods were
being promoted equally by the government campaign, and
each village contained individuals with differing degrees
of wealth and social standing. Cost-benefit analyses, envi-
ronmental leaming, and most kinds of direct biases can
neither generate nor maintain such patterns. Eventually,
given any social connection among villages (which Rogers
and Kincaid did clearly observe), the contraceptive method
with the highest bias or greatest benefits ratio should
spread to all villages. Or if all methods were somehow ex-
actly equal in benefits and costs or direct biases, then we
would expect these methods to scatter across the social
landscape and not cluster in village networks. In contrast,
conformist transmission predicts sociospatial clusters of
similar traits any time the differences between the costs
and benefits or the biases of alternative practices are rela-
tively small. Similar patterns of innovation clusters were
observed by Whyte (1954) in his study of the spread of air-
conditioning units in Philadelphia."

Cultural Drift Can Produce S-Shaped Diffusions

The models in this article have ignored the effects of
random sampling errors in transmission on the diffusional
process by assuming that the forces of environmental
learning and biased transmission are large compared with
the effects of sampling errors. However, this sampling er-
ror, or “cultural drift,” may be important if both u (the ex-
pected perceivable payoff difference) and B are quite
small. With B close to 0, individuals can be thought of as
relying on unbiased transmission. Because any particular
sample of cultural models from the population will not ex-
actly represent the current distribution of traits in the popu-
lation, repeated sampling through successive time steps
may sometimes accumulate successive “errors” favoring
one trait or another. Under these conditions, particularly in
smaller groups, a trait may occasionally be driven by re-
peated sampling errors to high frequency and fixation.
Such drift-driven diffusions will be S-shaped.

Although drift-driven processes may be responsible for
some S-shaped diffusions, this process seems unlikely to
account for most of the diffusions observed in the innova-
tions literature. I have three reasons for this. First, drift-
driven diffusions will occur suddenly without any corre-
spondence to when a particular trait first entered a
population. In contrast, many of the diffusions documented

in the innovations literature occur directly on the heels of
the introduction of a novel practice, product, idea, or tech-
nology to a particular social group. Consistent with this,
learning processes should begin affecting the frequency of
a novel trait soon after its introduction. Cultural drift, how-
ever, is no more likely to begin driving an adoption imme-
diately after an introduction than it is 100 years later. Sec-
ond, drft-driven diffusions will usually occur rather
rapidly (Hartl and Clark 1989), so the S-curves will lack
the “long tail” that characterizes many diffusions. In addi-
tion, the conformist component of cultural transmission,
which acts against any trait at low frequency, means that
drift-driven diffusions should be even more rare than we
would expect under unbiased transmission—although
when such diffusions do occur they will often have “long
heads” because once cultural drift drives (usually quite
rapidly) a trait’s frequency above 50 percent, conformist
transmission can drive it gradually to fixation. Such curves
will have a slow finish, rather than a slow start. And, third,
drift-driven diffusions should occur less frequently in
larger populations than in smaller populations because
sampling errors are more likely to accumulate in small
groups (Cavalli-Sforza and Feldman 1981). Yet larger
populations seem to experience more frequent diffusions
than smaller, more isolated social groups—a fact often at-
tributed to economic differences and risk aversion (Hen-
rich and McElreath 2000). However, unlike the case for ar-
eas typically studied by diffusion researchers, it seems
plausible that some of the diffusions observed in the ar-
chaeological record—stylistic variations, for example—
could result from cultural drift (Lipo et al. 1995; Neiman
1995).

A great deal of empirical work has been done on the
characteristics of “innovators” and ‘“early adopters”—
those who adopt early in diffusional processes (Cancian
1979, 1989; Dewees and Hawkes 1988; Rogers 1962,
1995). At first glance, these patterns are convincing. Ac-
cording to this work, early adopters tend to have larger so-
cial networks, higher status, more money, more cosmo-
politan contacts, and more exposure to mass media outlets.
The assumption seems to be that these characteristics
(causally) increase an individual’s likelihood of adopting
an innovation early in the diffusional process. Unfortu-
nately, the literature’s focus on successful diffusions pro-
duces an extremely biased database. The only situations
included in the database involve those in which the trait
actually spread; in contrast, all those times when the trait
did not spread are nor included. So, the more accurate em-
pirical claim would be: early adopters tend to have larger
networks, higher status, and so on given that the trait even-
tually spreads to high frequency. It is quite possible that all
individuals, regardless of their economic positions, media
exposure, and so forth, are equally likely to adopt an inno-
vation early but that the subsequent diffusion of an
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“innovation” depends on the characteristics of the initial
adopters. Things such as large social networks and high
status may have nothing to do with an individual’s chances
of innovating, but they may be critical to the subsequent
transmission of these traits. When poor, low-status indi-
viduals innovate, nobody copies them; so the trait never
diffuses, and the individuals never get into the database as
“innovators.”

Future work should turn the problem of diffusion on its
head and explain why certain societies, particularly peas-
ant groups, seem slow or resistant to the spread of novel
behavioral traits, ideas, and “innovations.” Building on
theoretical work that suggests that individuals should in-
crease their L and a values as environmental information
becomes ambiguous or problems become difficult (Hen-
rich and Boyd 1998), peasant researchers might explore
the connections among information quality (e.g., yield
variance), social learning, conformist transmission, and
rates of adoption. As well, this work could address how
cultural transmission mechanisms, under certain circum-
stances, can produce upper-middle-class conservatism or
the “Cancian-dip” (Cancian 1979). Finally, such work
could use diffusional data from a wide variety of sources
and numerical computer simulations to estimate parameter
distributions for L, P, b, and a.

Notes
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1. Recently, a vast amount of work in cognitive psychol-
ogy and experimental economics has severely criticized the
extreme, hyperrational models of classical economics (e.g.,
Gigerenzer and Goldstein 1996; Henrich 2002; Kagel and
Roth 1995; Kahneman et al. 1982; Rabin 1998); consequently,
many economists and other students of human behavior are
increasingly turning to cognitively more realistic models of
human learning and decision making.

2. Throughout this article, I use behavioral trait, or simply
trait, to stand for a whole range of things that could be “inno-
vations,” “cultural traits,” “practices,” “beliefs,” “ideas,” or
“values.”

3. This kind of experimentation is common in both tradi-
tional and modern agricultural systems—see Chibnik 1981,
Johnson 1972, and Rogers 1995.

4. By “substantially,” I mean an effect of the same order of
magnitude or larger than the cost-benefit effect.

5. Ithink some of the confusion (especially among archae-
ologists) about direct bias arises from reading Bettinger’s de-
scription (1991:188). This description is not wrong, but it is
incomplete and rather misleading in the context of this article.
At its most general level, direct bias can arise from anything
about the interaction between human psychologies (e.g., pref-
erences, ease of storage or recall from memory, goals) and
particular cultural traits that make individuals more likely to
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acquire one cultural variant over others (also see Boyd and
Richerson 1985:135). Note that, in general, I find that Bettig.
ger (1991) provides an excellent, insightful summary of cyl.
tural transmission theory.

6. Prestige-biased transmission represents a particular type
of indirect bias (Bettinger 1991:196; Boyd and Richerson
1985: ch. 8) for which we have a substantial amount of em.
pirical evidence (Henrich and Gil-White 2001).

7. Prestige biases may be either constant or frequency de-
pendent (dependent on g), depending on whether the fre.
quency of the transmitted trait in the population significantly
affects the success or prestige of the trait’s possessors, This ar-
ticle does not incorporate frequency-dependent biases, except
for conformist transmission, but many transmission models
have built this in using evolutionary game theory (e.g., McEl-
reath et al. 2000).

8. This occurs because whichever equation is second in the
life cycle (meaning whichever one gets substituted into) exerts
a small bias on the final result. It is a sampling bias that favors
the most recent recursion.

9. Furthermore, if we do not assume that L is big, then
Equation 10 yields a cubic equation in g, which can be solved
but does not yield any useful insights.

10. In analyses not discussed in this article, I have added
conformist transmission to the situations in which biased
transmission and environmental learning oppose one another.
I have found that this modification does not qualitatively
change the results discussed in these sections.

11. Looking across several domains of “innovation,”
Dewees and Hawkes (1988) found that particular commercial
fishermen could not be generally characterized as “innovators”
or “laggards” in their study of six different fishing-related in-
novations. Individuals who adopted early in one instance
might not adopt at all in another instance. “Innovativeness”
may not be a dispositional trait valid across many behavioral
domains.

12. The mean of the normal distribution shown in Figure 2
represents the quality of environmental information that is
available to every individual—this variable tells us how diffi-
cult the problem is. In this model, I assume that everyone re-
ceives the same quality of information and has the same abili-
ties to process this information.

13. There are other explanations for this kind of clustering
besides conformist transmission, including combinations of
other types of cultural transmission mechanisms (see Henrich
and Boyd 1998). Another possibility is that if the costs or
benefits of an innovation were frequency dependent, then
once one method attains high frequency, by whatever stochas-
tic processes, it would remain at high frequency. In some situ-
ations, this hypothesis seems mildly plausible, but in other
situations, like the spread of contraceptive methods, it is diffi-
cult to see the frequency dependence.
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Appendix A

Derivation of P, L, and P, from Figure 2

P, L, and P, (from Figure 2) can all be related through
the cumulative normal distribution using x, 67 and d If
F(u, 0% x) represents the cumulative normal distribution
evaluated at x, then

P2=F(u.az, —d—pu)
P =1-Fu,0%d—-y)
L=1-P - P,=Fu,0%d-p) - Fu,c’,—d—p)

Derivation of Equation 3

Equation 3 is a robust result of a variety of approaches to
formalizing biased cultural transmission and replicator dy-
namics. Here I outline only one possible derivation. More
extensive treatments can be found in Boyd and Richerson
1985, Cavalli-Sforza and Feldman 1981, Gintis 2000, and
especially Weibull 1995.
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Table 1. Probabilities of switching traits.

Table 2, Frequency of possible pairings.

Naive’s Model's Probability of ~ Probability of
Current Trait Trait Trait ] Trait 2
1 1 1 0
1 2 “{1+ @ —r)} Bl - —n)}
2 ) Y1+ (r1 — )} %l — (r— )}
2 2 0 1

In this two-trait formulation, the symbol q tracks the fre-
quency of individuals with Trait 1, while 1 — g tracts the
frequency of individuals with Trait 1. Naive individuals
enter the world and initially acquire the trait of their par-
ents. Later in life, as adolescents, they pick an individual at
random from the population and compare the r-value of
this model (in the case of prestige-biased transmission) or
the model’s trait (in the case of direct bias) with their own
r-value or the r-value of the trait they acquired from their
parents. The probabilities of switching traits or keeping the
current trait are shown in Table 1.

Remember, r-values—the replicatory propensities for
each of the traits—may also contain a conformist compo-
nent, which depends on the frequency of the trait in the
current population. In this circumstance, when a naive in-
dividual encounters someone with a trait different from his
or her own, he or she assesses the relative frequency of the
two traits and uses this in his or her imitation decision. The
r-values are described as follows:

r=b(l —a)+alg — %)

r=b(1-a)+a(l —q-"%)

n—n=b-b)1-a)+aq- 1)=b(1 —a)+a(2g-1)

As I explain in the main text, a represents an individ-
ual’s degree of reliance on conformist transmission versus
his or her reliance on other forms of cultural transmis-
sion—it measures the strength of conformist transmission
in the cognition of social learning. The variables b, and b,
are meant to potentially capture a variety of other forms of
non-frequency-dependent transmission biases, including
direct and prestige biases. Direct biases capture the
“catchiness” of an idea, belief, or practice. For example, if
Trait 1 is a “belief in the afterlife” and Trait 2 is a “belief
that death is the end,” then, for a variety of psychological
reasons, we might suspect that b, > b,. This means that
either human brains in general or human brains accultur-
ated in certain places are probabilistically more likely to
adopt Trait 1 than Trait 2. Similarly, if Trait 1 is the behav-
ior of “drinking sweet carbonated beverages” and Trait 2 is
“drinking well water,” then, for entirely different psycho-
logical reasons, we might expect b, > b, because the be-

Possible Pairings Frequency of Pairings
Trait 1-Trait 1 q

Trait 1-Trait 2 q(1 —¢q)

Trait 2-Trait 1 1-9q

Trait 2-Trait 2 1-9U -9

havior of drinking sweet carbonated beverages is (for
whatever reason) more catchy than the alternative. Or, un-
der prestige-biased transmission, the b’s might represent
an observable quality of the model, such as his or her pres-
tige, skill, or age. We have reason to believe that b, > b,
whenever the model is considered particularly skilled,
even when the skill has nothing to do with Trait 1 or 2
(Henrich and Gil-White 2001). In either case, b (= b, — b,)
provides the relevant comparison that determines both the
direction and the rate of cultural evolution.

For conformist transmission, [ have assumed that indi-
viduals can accurately determine the frequency of the more
common trait. This is a fairly harmless assumption that
substantially simplifies the mathematics. It turns out that
whether individuals use a sample of only three models
(picking three people at random from the population) or
the entire population does not significantly change the
qualitative results (Boyd and Richerson 1985:213). Fur-
ther, this sample can be somewhat nonrandom without
substantially changing the qualitative results (Boyd and
Richerson 1985:211).

Using the frequency of each possible pairing (Table 2),
we can calculate the frequency of Trait 1 after this imita-
tion process by multiplying the frequency (or probability)
of each pairing by the probability of ending up with Trait 1.
We get the following recursion:

g =g (1) +q(1 ~ g¥all +(r, — r,)}
+(1 = g)gha{1 + (r, — r)} + (1 — g)(1 — g)(0)

Simplifying this, we get an expanded form of Equation 3,
showing the conformist component:

g =q+(1 —q)q(r,—r)=q+q(1 - q)B
=g +q(1 - {b(l — @) +a2q — 1)}

—
Other  Conformist
Biases Component
This corresponds to Equation 11 in the text. When @ =0,
which effectively eliminates conformist transmission and
frequency-dependent biases, we arrive at Equation 3 in the
main text.



